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Successful testing programs rely on high-quality test items to produce reliable scores and defensible 
exams. However, determining what statistical screening criteria are most appropriate to support these 
goals can be daunting. This study describes and demonstrates cost-benefit analysis as an empirical 
approach to determining appropriate screening criteria for a given testing program and purpose. 
Using a certification exam’s item pool and simulation we illustrate how to examine a wide range of 
screening criteria and reach an acceptable balance between the number of items screened out (cost) 
and pass/fail classification accuracy (benefit). 

Educational testing practitioners are well aware that 
successful testing programs rely on high-quality test 
items. That is, in addition to covering the breadth of the 
construct being measured as outlined in the test 
blueprint, items need to be statistically acceptable to be 
included on a test. What measurement professionals do 
not necessarily agree upon is which items can be 
considered “good enough.” What specific criteria do test 
items need to meet to be deemed psychometrically 
sound? To answer this question, psychometricians often 
defer to item screening rules, which essentially specify 
the range of values item difficulty and discrimination can 
take to be deemed acceptable. These rules are typically 
enforced at pretesting of the items, and the items’ 
performance is monitored throughout their lifetimes as 
live operational items. The use of classical screening 
rules may seem obsolete in a world where large-scale 
testing programs increasing rely on Item Response 
Theory (IRT); however, as will become evident in the 
next sections, many practitioners, including large testing 
programs like the SAT, continue to use classical statistics 
to screen items at pretest. The use of classical statistics 
is particularly common among testing programs with 
small examinee samples, where it may not be feasible to 
obtain stable IRT parameter estimates and information 
(Zumbo & Rupp, 2004, Chapter 4). Despite the 
continued reliance on screening rules using classical 

statistics, there is considerable disagreement in the 
literature as to what these screening rules should be. In 
this paper, we review the literature on classical screening 
criteria to highlight the variety of rules recommended in 
different contexts, and then we describe and 
demonstrate the use of cost-benefit analysis, a 
framework commonly used in economics, to determine 
an appropriate set of screening criteria for a given testing 
program and purpose empirically. 

Guidelines from the Literature  

The Standards for Educational and Psychological Testing 
(AERA/APA/NCME, 2014) do not provide any 
specific screening criteria but state that the model and 
the sample used for evaluating the psychometric 
properties of items should be justified and well 
documented (Standard 4.10, p. 88). Nevertheless, item 
screening guidelines do exist. More than five decades 
ago, Ebel (1965) proposed what are perhaps the earliest 
item screening criteria. His guidelines pertained to the 
so-called index of discrimination D (i.e., the difference 
in an item’s proportion correct or p-values between the 
top and bottom 27% of examinees based on their total 
scores) ranging from -1 to 1. The use of 27% is 
somewhat arbitrary but can be traced back to Kelley 
(1939). Ebel’s guidelines suggested that items with D < 
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.20 needed to be heavily revised or eliminated; items with 
D of .20-.29 were marginal and needed revision; items 
with D of .30-.39 needed little or no revision; and items 
with D of .40 or higher were functioning well. However, 
these recommendations were based on anecdotal 
experience rather than empirical evidence. Although the 
index of discrimination has fallen out of favor 
(Youngman, 1979), the precedent of relying on 
experience rather than empirical analysis to establish 
screening criteria has persisted. 

Discrimination 

Most screening recommendations available today 
differ based on both the context of the exam and the 
author offering the recommendation. For example, 
Varma (2010) in a recommendation for school 
practitioners, endorsed an item-total point-biserial 
correlation of 0.15, but suggested that “[her] experience 
has shown that ‘good’ items have point-biserials above 
0.25.” (p. 6). In a somewhat more lenient 
recommendation, the Iteman user manual (Assessment 
Systems Corporation, 2017) recommends that screening 
rules be set at 0.10 or 0.20, but suggests that this cutoff 
could be reduced further in the event of small sample 
sizes. Clauser and Hambleton (2017) are more lenient 
still, indicating that in the context of classroom 
assessments “the expectation is that the discrimination 
values are at least above 0.0 and preferably substantially 
so” (p. 360). Although partly justified by context, this 
discordance across recommendations is enough to 
stymie practitioners, but it is not the end of the 
confusion in the interpretation of screening rules. 

Even when it appears that recommended screening 
rules agree, discrepancies exist due to the chosen 
correlation statistic. The most common issue seems to 
be between the biserial correlation and the point-biserial 
correlation. Both correlation metrics indicate the 
relationship between one continuous and one 
dichotomous variable; however, the biserial assumes an 
underlying continuous variable (e.g., ability) manifested 
in a dichotomous one (e.g., correct/incorrect), whereas 
the point-biserial does not have this assumption. These 
are by far the most widely used item discrimination 
indices in measurement practice today, but as they are 
underpinned by different assumptions and computed 
differently, they result in different values for the same 
data. Thus, even when screening recommendations 
appear to be nominally the same, they have practically 
different interpretations. For example, in 1967 Nunnally 

recommended a minimum biserial correlation of 0.20. 
More recently, Nunnally and Bernstein (1994) again 
recommended a minimum discrimination of 0.20, but 
now this recommendation was applied to the point-
biserial correlation (pp. 302-306). 

In fact, the recommendation of 0.20 appears many 
times in the literature for both the biserial and the point-
biserial. For example, ACT (Liu, Harris, & Schmidt, 
2007) and Educational Testing Service (Chubbuck, 
Curley, & King, 2016) report 0.20 as the minimum 
recommended biserial correlation. Similarly, the 
technical manual for the SAT explains that “most items 
included on SAT operational forms fall within a biserial 
range of +.20 to +.80” (The College Board, 2016, p. 46). 
Crocker and Algina (1986), on the other hand, make the 
recommendation of 0.20 as the minimum point-biserial 
(p. 324). Finally, in the fourth edition of Educational 
Measurement, Schmeiser and Welch (2006) state that “in a 
test intended to rank order and differentiate examinees, 
discrimination indices of .20 are desirable” (p. 339) but 
do not specify whether this recommendation applies to 
the biserial or point-biserial correlation. This may seem 
like a minor point, but since the biserial correlation is 
almost always higher (or more extreme in an absolute 
sense) than the point-biserial correlation for the same 
data (Lord & Novick, 1968), the recommendations for 
the same value can differ substantially. For example, a 
point-biserial of 0.20 for a mid-difficulty item 
corresponds to a biserial of 0.25 (Terrell, 1982). A 
difference of this magnitude will have a significant 
impact on item selection decisions for many exams. 
Overall, although the 0.20 minimum has been a 
recommended screening rule repeatedly, there is little 
consensus in the literature since this recommendation 
has been applied to at least three different correlation 
indices. 

In sum, there are substantial differences across the 
literature in what constitutes a minimally acceptable level 
of discrimination. Nominally, the differences seem to 
range from 0.0 to 0.25, but these differences are 
exacerbated by the choice of correlation statistics. This 
discordance places the measurement professional in a 
difficult position when attempting to select an 
appropriate discrimination screening criterion for their 
particular exam. 

Difficulty 

Guidelines for item difficulty are less common than 
those for discrimination, as many authors suggest that 
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decisions of item difficulty criteria be driven 
predominantly by test purpose. For example, Schmeiser 
and Welch (2006) warn that extremely difficult items (p 
< .30) could be problematic, especially when 
discrimination is negative, but acknowledge that 
determining this lower bound will depend on the test’s 
purpose. Crocker and Algina (1986), reaffirming the 
focus on test purpose, explain that when items are 
moderately correlated with the total score or an external 
criterion (e.g., rbis = 0.30-0.40), mid-difficulty items (e.g., 
p = 0.40-0.60) are preferred as they tend to maximize 
reliability of scores across a wide range of proficiency. 
However, for a criterion-referenced test whose goal is to 
select among the best applicants, it may be desirable to 
have more difficult items to ensure sufficient 
discrimination among examinees at this range of ability. 
With respect to the other end of the difficulty spectrum, 
authors also advise selecting cutoffs based on the test’s 
context and purpose with p-values as high as 0.95 
considered acceptable in situations where most 
examinees are expected to know the content such as 
end-of-course exams (Schmeiser & Welch, 2006). In 
general, the recommendations for item difficulty tend to 
be more consistent than those for item discrimination, 
but they are also much less prescriptive. These 
recommendations create ambiguity as to what exactly 
one should do operationally. In other words, although 
there is a general consensus as to what practitioners 
should do (i.e., determine screening criteria based on the 
test’s purpose and the examinee population), the 
literature provides little guidance on how practitioners 
should go about performing this task. 

In summary, there is significant variability in the 
recommended screening criteria found in the literature. 
This would be a relatively small problem if there were 
substantial empirical evidence to support these 
recommendations. Unfortunately, to our knowledge, no 
citations are provided for these recommended 
guidelines, so it remains unknown how adopting a higher 
or a lower criterion would impact important 
psychometric outcomes such as examinee scores, 
classification decisions, and ultimately the validity of the 
inferences made about examinees (Kane, 2013). This is 
regrettable since, as we will demonstrate, establishing 
screening criteria based on empirical evidence makes it 
possible to identify an appropriate solution for a testing 
program given its examinee population, item 
characteristics, and purpose. 

Determining Item Screening Criteria 
Empirically 

The purpose of this study is to illustrate an empirical 
method for determining appropriate item screening 
criteria using cost-benefit analysis. The rationale behind 
cost-benefit analysis is simple: “do A if its benefits 
exceed its costs, and not otherwise” (Layard & Glaister, 
2012, p. 1). What is not so straightforward is how we 
measure “cost” and “benefit.” However, as Layard and 
Glaister (2012) put it, “The only basic principle is that 
we should be willing to assign numerical values to costs 
and benefits, and arrive at decisions by adding them up 
and accepting those projects whose benefits exceed their 
costs” (p. 2). In economics, where cost-benefit analysis 
originated, there are typically many variables at play, and 
the analysis can become fairly complex. In determining 
item screening criteria, however, the task boils down to 
weighing the cost associated with screening out items (by 
applying a given set of screening rules) and the benefit 
of measurement precision that would result from the 
items that remain in the pool. Here by “cost” we mean 
screening out items that have already been developed, 
not the cost of item development, although in a sense 
the literal cost associated with item development is 
subsumed in the item screening process. Specifically, by 
examining the effects of various combinations of item 
difficulty and discrimination screening criteria on a 
desired outcome (e.g., pass/fail classification accuracy), 
one can arrive at an appropriate solution given the 
examinee population, item characteristics, and purpose 
of the exam. This approach is intended to help 
practitioners empirically determine which screening 
criteria are best for their testing program, eliminating the 
need to rely on general guidelines. In the following 
sections, we describe the process for determining 
optimal screening criteria and illustrate the method in 
the context of a high-stakes medical certification exam. 

Analytical Framework 

Determining appropriate screening rules is 
ultimately a matter of weighing the potential costs and 
benefits of any particular set of screening criteria. As 
screening criteria become more stringent, more items 
will be removed from the live pool (cost). At the same 
time, the quality of the remaining items in the pool will 
improve. This improved item quality ultimately leads to 
more accurate scores and classification decisions 
(benefit). The challenge is in determining which set of 
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screening criteria achieve an optimal balance of cost and 
benefit. 

Cost-Benefit Simulation 

Simulation is an effective tool to empirically 
connect each potential set of screening criteria to its 
associated costs and benefits. To ensure that the 
simulation reflects the results that are likely to be 
observed during an operational exam administration, it 
is important to gather the IRT parameters from a large 
number of pretest items. The use of IRT is not a 
requirement for cost-benefit analysis, but it makes the 
simulation and analysis easier. It is critical that item 
statistics come from pretest items, because the live item 
pool will only include items that meet the current set of 
screening criteria, and it will therefore be impossible to 
explore the impact of less stringent criteria. Once the 
potential item pool is collected, classical difficulty (p) and 
discrimination (e.g., biserial correlation, rbis) values must 
be calculated for all items in the pool. For items 
calibrated in a 2- or 3-parameter IRT model, it may be 
reasonable to calculate “true” classical statistics based on 
the IRT parameters and actual examinee ability 
distribution. These values can be used to simulate 
responses from a large number of examinees for each 
item. Once these response strings are simulated, one can 
compute true classical statistics for each item. This 
approach helps to eliminate noise in the classical 
statistics that will be observed using pretest responses 
alone, which are often based on small samples. With the 
pretest item parameters, classical statistics, and examinee 
ability distributions available, it is now possible to 
connect each set of screening criteria to a specific cost 
and benefit. 

Choosing Relevant Screening Criteria  

A key component of cost-benefit analysis is 
specifying what item screening criteria combinations 
should be examined in the simulation. In principle, one 
could investigate all p-values between 0.0 and 1.0 and all 
discriminations between -1.0 and 1.0. As a practical 
matter, the recommendations found in the literature may 
be helpful in simplifying the analysis. For most exams, it 
will probably be appropriate to examine biserial 
discriminations between 0.0 and 0.30. For difficulty, p-
values less than 0.30 and greater than 0.80 may warrant 
examination. Ultimately, the selection of appropriate 
ranges is at the discretion of each practitioner. However, 
it may be practical to err on the side of including too 

many potential screening rules, as there is little additional 
work associated with examining additional rules. 

Building a Theoretical Item Pool for Each Set of 
Screening Criteria 

Once the relevant screening criteria have been 
defined, one can apply all combinations of difficulty and 
discrimination screening rules to the pool of items. Any 
item that does not meet the specified criteria should be 
removed from the potential item pool. This process 
yields one theoretical item pool for each combination of 
potential screening rules. In essence, this step simulates 
the composition of the live item pool one would observe 
if they implemented different screening rules. 

Sampling Items to Build Forms, Simulate 
Responses, and Estimate Parameters 

Once these theoretical item pools are built, one can 
sample items from each to build simulated test forms 
based on that specific combination of screening rules. It 
is important to note that these simulated test forms 
should contain the same number of live (i.e., not pretest) 
and anchor items as the operational test form of interest. 
The designation of anchor items allows examinee 
abilities and item parameters to be linked back to the 
operational scale. Next, using the person ability 
distribution, one would simulate examinee responses to 
each test form. Finally, one would calibrate those 
responses using the operational IRT model to estimate 
item parameters and examinee abilities. Again, these 
estimates reflect what one would observe using different 
combinations of screening rules. The specific number of 
simulated test forms is at the discretion of each 
practitioner, but we have observed stable results using as 
few as 100 test forms for each set of screening rules. 

Computing Cost and Benefit for Each Set of 
Screening Criteria 

Having created the theoretical item pool for each 
set of screening criteria and calibrated the simulated test 
forms, one can finally calculate the optimal cost and 
benefit associated with each set of screening criteria. The 
cost is simply the proportion of the original item pool 
that is removed when the screening criteria are applied. 
So, for example, if 95% of the items in the item pool 
meet or exceed the screening criteria, those criteria 
“cost” 5% of the pool. The benefit is somewhat more 
complicated. If the purpose of the exam is to place 
examinees appropriately on the ability scale, one must 
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calculate the difference between the true and observed 
ability estimate for each simulated examinee. The mean 
absolute difference between examinees’ true and 
observed abilities becomes the measure of the benefit of 
the screening criteria. Alternatively, if the purpose of the 
exam is to classify examinees into discrete groups, it may 
be more appropriate to compute classification accuracy. 
Specifically, one can apply the operational cut score to 
the true (i.e., generating) and observed (i.e., estimated) 
abilities to compute the proportion of matching 
classification decisions. In this case, the percent of 
examinees correctly classified is the “benefit” of a 
particular set of screening criteria. After the costs and 
benefits are calculated for each set of screening criteria, 
one will be able to examine these tradeoffs and select an 
appropriate set of screening criteria for their particular 
exam program. 

Selecting Appropriate Screening Criteria  

After the simulation is complete, and the cost and 
benefit of each potential set of screening rules have been 
determined, practitioners must select the specific set of 
screening rules that makes the most sense for their exam. 
Although different exams may have very different 
requirements, screening criteria will typically be selected 
using a cost constraint, a benefit constraint, or an 
optimal balance of the two.  

Cost Constraint 

A cost constraint exists when practitioners are 
seeking the greatest benefit with a maximum fixed cost. 
This will frequently be the case when a testing program 
is limited in the number of items that it can easily 
produce each year or when those items are very 
expensive to develop. In this case, it may be reasonable 
to specify a cost constraint such that no more than, say, 
20% of the items could be removed from the pool.  

In Figure 1, we see a fictitious example of the 
relationship between the percent of items removed after 
screening (cost) on the x axis and the percent correct 
classification (benefit) on the y axis for 20 potential sets 
of screening criteria (circles). Under the 20% cost 
constraint, practitioners should select the gray set of 
screening criteria to the left of the dashed line, as it 
provides the greatest benefit (percent correct 
classification) of all options with fewer than 20% of 
items removed. 

Benefit Constraint 

A benefit constraint exists when some minimum 
benefit must be achieved regardless of cost. This might 
occur when the consequences of misclassification are 
extremely high, as is the case for many licensure and 
certification exams. In this case, practitioners may 
specify a minimum benefit—say, 95% of examinees 
must be correctly classified—and then seek out the 
lowest cost that achieves this goal. 

In Figure 2, we see the same data as before, but now 
with a 95% benefit constraint.  Under this constraint, 
practitioners should select the gray set of screening 
criteria above the dashed line, as it results in more than 
95% of examinees being correctly classified with the 
fewest items removed from the pool. 

Optimal Balance 

Identifying the optimal balance between cost and 
benefit will be appropriate when testing programs have 
no predetermined cost or benefit constraints. This will 
be the case for most testing programs with a reasonably 
robust item pool and no absolute requirements for 
classification accuracy. In these cases, the nonlinear 
relationship between cost and benefit makes it possible 
to identify the point at which additional cost will yield 
only trivial returns in benefit. One can employ piecewise 
or segmented regression (i.e., regression with unknown 
breakpoints) to identify the breakpoint where the 

Figure 1. Selecting screening criteria using a cost 
constraint 
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relationship between cost and benefit changes abruptly. 
Screening rules that produce costs and benefits around 
this breakpoint have an optimal balance of cost and 
benefit. 

In Figure 3, we have fitted a segmented regression to 
the data. Based on these results we can see that the gray 
set of screening criteria at the breakpoint represents an 
optimal balance between cost and benefit. Applying 
more stringent screening rules introduces a significant 
loss in items with only a slight improvement in 

classification accuracy. Conversely, applying less 
stringent rules results in a significant reduction in 
classification accuracy with relatively small reduction in 
the percent of lost items. These three approaches 
illustrated in Figures 1-3 make it possible for 
practitioners to identify the appropriate screening 
criteria given the constraints specific to their testing 
program. 

Real Data Example 

To illustrate the value of cost-benefit analysis for 
identifying screening criteria, we analyzed real data from 
a high-stakes medical certification exam to determine the 
optimal screening criteria for that exam. This exam 
included an item pool with more than 3,000 items all 
calibrated with the 2-parameter logistic IRT model. We 
manipulated five levels of discrimination (rbis ≥0.10, 
≥0.15, ≥0.20, ≥0.25, ≥0.30) and four levels of difficulty 
(p ≤0.95, ≤0.90, ≤0.85, ≤0.80) for a total of 20 screening 
criteria combinations. We chose these specific values 
because they provide a range that spans most 
recommendations from the literature and agree with our 
earlier simulation work that suggested our exams could be 
improved by increasing discrimination (i.e., higher rbis) 
and difficulty (i.e., lower p-values). Once we determined 
the item pool, examinee population, and screening 
criteria, the next step in the cost-benefit analysis was to 
conduct the simulation study.  

We began the simulation by applying the 20 sets of 
screening criteria to the complete item pool to create 20 
theoretical item pools. The largest of these pools had 
over 3,000 items and the smallest had just over 650 
items. Then we randomly selected 200-item forms from 
each of these live pools. Next, using the items’ 
operational IRT statistics as generating values, we 
simulated item responses for roughly 2,000 thetas with 
mean = -0.06, SD = 0.94. We calibrated these responses 
and linked them back to the operational scale using 60 
anchor items. Both the total number of items and the 
anchor size mirrored our operational practices. Finally, 
we applied the operational passing score to the 
generating abilities and the equated ability estimates to 
produce true and estimated pass/fail decisions. Doing so 
allowed us to compute classification accuracy in each 
condition. We replicated this process 100 times for each 
set of screening criteria to ensure that we obtained stable 
results. The simulation culminated in an estimated cost 
and benefit for each of the potential screening rules. 

Figure 2. Selecting screening criteria using a benefit 
constraint 

Figure 3. Selecting screening criteria using the 
optimal balance of cost and benefit 
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Results 

As expected, there was a positive relationship 
between cost and benefit, with more stringent screening 
criteria (and a larger percent of items removed after 
screening) resulting in higher percent correct 
classification. That is, selecting higher quality items from 
the pool was associated with greater classification 
accuracy. Importantly, the relationship between cost and 
benefit was nonlinear: initial increases in the stringency 
of screening criteria (and increases in cost) were 
associated with substantial increases in classification 
accuracy up to a point (around 22% of items removed 
from the original pool). After this point, applying more 
stringent criteria and removing a larger proportion of 
items from the pool was associated with only modest 
increases in classification accuracy. The cost-benefit 
analysis example presented here had no predetermined 
constraints for either cost (i.e., percent of items to be 
screened out of the pool) or benefit (e.g., percent correct 
classification). In other words, our goal was to find the 
optimal screening criteria solution that would maximize 
pass/fail classification accuracy and minimize the 
amount of items we would remove from the pool. 
Therefore, we performed segmented regression using 
the R package “segmented” (Muggeo, 2003; 2008) to 
identify and plot the breakpoint in the cost-benefit 
relationship (see Figure 4). Doing so allowed us to 
identify the turning point after which we observe no 
substantial added benefit at a reasonable cost.  

There were two item screening criteria 
combinations (circles shaded in gray) near the 
breakpoint shown in Figure 4: a) discrimination ≥0.15, 
difficulty ≤0.90, which would result in 22% of items 
removed and 93% correct classification; and b) 
discrimination ≥0.20, difficulty ≤0.95, which would 
result in 23% of items removed and 94% correct 
classification. From a statistical perspective, we could 
champion either condition as an appropriate screening 
criteria solution. However, from an exam content 
perspective, our subject matter experts expressed 
interest in retaining easier items that essentially every 
examinee should answer correctly. Thus, we collectively 
agreed to discrimination ≥0.20, difficulty ≤0.95 as the 
appropriate screening criteria in this testing program. 

Discussion 

The selection of appropriate screening rules can 
have a significant impact on the validity of inferences 

based on examinee scores. Unfortunately, despite the 
demonstrable importance of this decision, practitioners 
are provided with relatively little guidance on what 
screening criteria to adopt. As we discussed, the 
literature on this topic provides varied and sometimes 
contradictory recommendations. Moreover, such 
recommendations are not accompanied by citations, so 
they may or may not be translatable to exams with 
different item pools, examinee populations, and 
purposes. Beyond these recommendations, the literature 
provides limited guidance as to how a psychometrician 
might evaluate and ultimately select the screening criteria 
that are most appropriate for a given exam. 

This paper presents a method for evaluating the 
costs and benefits of possible screening criteria including 
a framework for selecting the appropriate criteria given 
the needs of the exam. We believe that framing the 
selection of screening criteria as a balance between cost 
and benefit formalizes the tradeoffs that must be made, 
and provides empirical evidence in support of the 
ultimate selection. Our hope is that this paper has shed 
some light on the consequences of applying various 
combinations of item screening rules on an outcome of 
interest and will serve as a guide to assessment 
professionals in their own endeavors to determine 
appropriate item screening criteria. 

To demonstrate the efficacy of this approach, we 
applied this method to data from a high-stakes medical 
certification exam. A cost-benefit analysis revealed that 

Figure 4. Cost-benefit analysis via segmented 
regression with one breakpoint 



Practical Assessment, Research & Evaluation, Vol 24 No 2 Page 8 
Bashkov & Clauser, Screening Criteria 
                          
the optimal screening criteria were either discrimination 
≥0.15, difficulty ≤0.90 or discrimination ≥0.20, 
difficulty ≤0.95. Both combinations of screening criteria 
resulted in essentially the same improvement in pass/fail 
classification accuracy for the least number of screened 
out items. As shown in Figure 4, practitioners could be 
too stringent if they adopted guidelines greater than the 
ones discussed above, as such guidelines add little 
improvement in the outcome for a noticeably large loss 
of items. Alternatively, adopting a less stringent set of 
screening criteria could be too lenient a choice, as the 
few retained items would cost the practitioner a great 
reduction in accuracy. This is exactly why a disciplined 
approach to the selection of screening criteria is so 
important. Ultimately, the optimal set of screening 
criteria will depend on the item bank depth/breadth, the 
blueprint, and cost-benefit tradeoffs. 

Limitations 

The most significant limitation of this method lies 
in its rather significant data requirements. For testing 
programs to implement this method, they require a large 
item pool with both pretest and live items. This will not 
be feasible for all testing programs. Furthermore, since 
the simulation relies on the fact that classical difficulty 
and discrimination would manifest in the items’ IRT 
parameters, this method may be more appropriate for 
item pools calibrated with the 2- or 3-parameter IRT 
model. That said, exams calibrated using the Rasch or 1-
parameter model would still be able to identify an 
optimal difficulty screening rule using this approach. 
Despite the data requirements, we believe that the use of 
a data-driven method for selecting screening criteria is 
preferred whenever possible. 

Another limitation of the cost-benefit analysis 
method described and demonstrated here is that items 
were randomly selected to form 200-item test forms 
regardless of content. Ideally, the selection of items 
should follow the operational exam blueprint so as to 
preserve not only the structure of the exam, but also the 
distribution of items among content areas. The 
downside to this approach, however, is that the 
simulation would become much more complex, and this 
otherwise straightforward method may lose some of its 
appeal to practitioners. To remedy this limitation, we 
examined the distribution of item parameters across all 
content areas outlined in the blueprint and found no 
practically significant differences among content areas in 
terms of item quality. That is, if we were to apply a more 

stringent set of screening criteria, no content area would 
be disadvantaged. 

Conclusion 

The present study provides an empirical method of 
determining what item screening criteria to use in 
practice. The method is straightforward to implement 
and provides empirical evidence to support the ultimate 
selection of screening criteria. We hope the illustration 
presented here serves as a good example of the rationale, 
logistics, and, most importantly, the value of using cost-
benefit analysis to determine appropriate item screening 
criteria in a variety of assessment contexts. 

References 

American Educational Research Association, American Psychological 
Association, National Council on Measurement in Education, 
& Joint Committee on Standards for Educational and 
Psychological Testing. (2014). Standards for educational 
and psychological testing. Washington, DC: American 
Educational Research Association. 

Assessment Systems Corporation. (2017). User Manual for 
Iteman 4.4. Minneapolis, MN: Author. 

Chubbuck, K., Curley, W. E., & King, T. C. (2016). Who’s 
on first? Gender differences in performance on SAT® 
Critical Reading items with sports and science content 
(ETS Research Report No. RR-16-26). Princeton, NJ: 
Educational Testing Service. 

Clauser, J. C., & Hambleton, R. K. (2017). Item analysis for 
classroom assessments in higher education. In C. 
Secolsky & D. B. Denison (Eds.), Handbook on 
measurement, assessment, and evaluation in higher 
education (2nd ed., pp. 355-369). New York, NY: 
Routledge. 

Crocker, L., & Algina, J. (1986). Introduction to classical and 
modern test theory. Orlando, FL: Holt, Rinehart, & 
Winston. 

Ebel, R. L. (1965). Measuring educational achievement. 
Englewood Cliffs, NJ: Prentice-Hall. 

Ilic, D., Bin Nurdin, R., Glasziou, P., Tilson, J. K., & 
Villanueva, E. (2014). Development and validation of 
the ACE tool: Assessing medical trainees’ competency 
in evidence based medicine. BMC Medical Education, 14, 
1-6. 

Kane, M. T. (2013). Validating the interpretations and uses 
of test scores. Journal of Educational Measurement, 50, 1-
73. 



Practical Assessment, Research & Evaluation, Vol 24 No 2 Page 9 
Bashkov & Clauser, Screening Criteria 
                          
Kelley, T. L. (1939). The selection of upper and lower 

groups for the validation of test items. Journal of 
Educational Psychology, 30, 17-24. 

Layard, R., & Glaister, S. (2012). Cost-benefit analysis (2nd 
ed.). Cambridge, UK: Cambridge University Press. 

Liu, J., Harris, D. J., & Schmidt, A. (2007). Statistical 
procedures used in college admissions testing. In C. R. 
Rao, & S. Sinharay (Eds.), Handbook of Statistics, 
Volume 26: Psychometrics (pp. 1057-1094). 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of 
mental test scores. Reading, MA: Addison-Wesley. 

Muggeo, V. M. R. (2003). Estimating regression models with 
unknown break-points. Statistics in Medicine, 22, 3055-
3071. 

Muggeo, V. M. R. (2008). segmented: an R Package to Fit 
Regression Models with Broken-Line Relationships. R 
News, 8/1, 20-25. Retrieved from https://cran.r-
project.org/doc/Rnews/  

Nunnally, J. C. (1967). Psychometric Theory. New York, 
NY: McGraw-Hill. 

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric 
Theory (3ed ed.). New York, NY: McGraw-Hill. 

Terrell, C. D. (1982). Table for converting the point biserial 
to the biserial. Educational and Psychological Measurement, 
42, 983-986. 

The College Board (2016). SAT Technical Manual. Retrieved 
from 
http://www.sde.ct.gov/sde/lib/sde/pdf/evalresearch/
sattechmanualcompletefinaltextforstates.pdf  

Schmeiser, C. B., & Welch, C. J. (2006). Test development. 
In R. L. Brennan (Ed.), Educational measurement (4rd ed., 
pp. 307-354). Westport, CT: Praeger. 

Varma, S. (2010). Preliminary item statistics using point-
biserial correlation and p-values. Retrieved from 
https://eddata.com/wp-
content/uploads/2015/11/EDS_Point_Biserial.pdf  

Youngman, M. B. (1979). A comparison of item-total point 
biserial correlation, Rasch and alpha-beater item 
analysis procedures. Educational Studies, 5, 265-273. 

Zumbo, B., & Rupp, A. A. (2004). Responsible modeling of 
measurement data for appropriate inferences: 
Important advances in reliability and validity theory. In 
D. Kaplan (Ed.), The SAGE Handbook of 
Quantitative Methodology for the Social Sciences (pp. 
73-92). Thousand Oaks, CA: Sage Press. 

 

 

Citation: 

Bashkov, Bozhidar M., Clauser, Jerome C. (2019). Determining Item Screening Criteria Using Cost-Benefit 
Analysis. Practical Assessment, Research & Evaluation, 24(2). Available online: 
http://pareonline.net/getvn.asp?v=24&n=2  
 

Corresponding Author 

Bozhidar M. Bashkov, Measurement Scientist  
American Board of Internal Medicine 
510 Walnut Street, Suite 1700 
Philadelphia, PA 19106 
 
email: bbashkov [at] abim.org  


