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There are two main lines of research in estimating classification accuracy (CA) and classification 
consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer 
implementations of both approaches in an accessible and unified framework. Even with available 
implementations, there remains decisions a researcher faces when choosing and applying the best 
approach for the situation. This paper identifies and discusses the practical issues that researchers 
may face when estimating CA and CC. To exemplify the analytic decisions, both approaches are 
applied to a common dataset with discussion. In addition to generalizable guidance, the 
demonstration provides R code for the cacIRT package. 

For both reporting and inferential purposes, a 
primary outcome of many assessments is to classify 
examinees into categories. For example, examinees can 
be classified into and reported as Advanced, Proficient, 
Basic, and Below Basic based on their test scores. The 
classification of each examinee is based on some 
estimate of his or her ability. The estimate of the 
examinee’s ability contains some amount of 
measurement error, and this measurement error 
propagates to the classification decision. Classification 
Accuracy (CA) and Classification Consistency (CC) are 
two indices that provide a simple way to communicate 
the quality of the classification decision. CA estimates 
the rate at which the classification is correct, and so has 
a strong relationship to the validity of the classification. 
CC estimates the rate at which the classification 
decision will be the same on two identical and 
independent administrations of the test, and so has a 
strong relationship to the reliability of the classification. 
Both indices have a maximum value of 1. CA and CC 
are widely reported in educational assessment technical 
reports. 

Under Item Response Theory (IRT) there are two 
main approaches to estimate CA and CC. The first is 
called the Rudner approach (Rudner, 2005) and the 

second is called the Lee approach (Lee, 2010). Both 
approaches can estimate CA and CC and both have 
been shown to perform well in simulation studies 
(Lathrop & Cheng, 2013). While they do have many 
similarities, their differences are enough that 
researchers wanting to estimate CA and CC should be 
aware of their differences and choose the most 
appropriate approach for their situation. But their 
differences, and how those differences affect the 
analytic decision making of the researcher, have been 
less discussed in the literature (although see Lathrop & 
Cheng, 2013 for a mathematical comparison). This 
paper briefly explains both approaches and identifies 
and discusses practical implementation issues that 
might influence the decision of the researcher. To do 
so, both approaches are applied to a common dataset 
using the freely available R package cacIRT (Lathrop, 
2011). 

Prior to the growth of IRT, methods to estimate 
CA and CC were rooted in Classical Test Theory 
(CTT). Most involved specifying a parametric form, 
such as the multinomial or beta-binomial models, to 
represent the distribution of test scores. A summary of 
the CTT methods can be found in Han & Rudner 
(2012). For tests that do not follow IRT, some methods 
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may still be of importance today. In particular, the 
method of Livingston & Lewis (1995) appears often in 
technical reports. 

Estimating CA and CC 

To estimate CA and CC, the researcher needs the 
calibrated item parameters, the cut score(s), and the 
IRT-based ability estimates. The cut score(s) defines 
the score required to be classified into a certain 
category. There can be one or more cut scores, but this 
paper uses the simplest case of a single cut score that 
classifies examinees into Pass/Fail groups. To make a 
classification, an examinee’s ability estimate is 
compared to the cut score. If the examinee’s ability is 
equal to or greater than the cut score, he or she passes 
the test. 

CA and CC measure the quality of the 
classification by quantifying the measurement error 
around the examinee’s ability estimate. Both the 
Rudner approach and the Lee approach use IRT 
models to construct probability distributions for each 
examinee’s ability estimate. These distributions reflect 
the uncertainty about the ability estimate. How the two 
approaches form these distributions, however, is quite 
different. 

To demonstrate the approaches and their 
implementation, an empirical dataset was used of over 
2,800 students responding to a 46-item test as part of 
an on-line undergraduate course. The data were 
graciously provided for use in this article by L. M. 
Rudner (personal communication, September 3, 2014). 
The test is assumed to follow the 3PL IRT model and 
item parameters have been previously calibrated. The 
cut score is given as a total score of 27. Because the cut 
score is given as a total score, it is also transformed to 
the latent ability scale. According to the Test 
Characteristic Curve (TCC), an examinee with ability of 
.0245 has an expected total score of 26.9995. In 
practice, cut scores can be given on the total score or 
the latent scale, and transforming between the two 
scales may introduce error as well as the issue of 
rounding when moving from the (continuous) latent 
scale to the (discrete) total score scale.  

The Rudner Approach 

The Rudner approach relies heavily on IRT to 
estimate CA and CC. Notably, the Rudner approach 

uses an examinee’s latent ability estimate �� and a cut 
score that is on the same latent scale. The Rudner 

approach assumes that the ability estimate and its 
standard error form a normal distribution (which is a 
very reasonable assumption and has been examined in 
Guo, 2006).  

The top panel of Figure 1 shows this distribution 

for a single examinee. The examinee’s �	� is above the 
cut score of .0245, and so they pass the test. The 
proportion of the area shaded in red represents the 
probability that the examinee is misclassified. This 
single examinee’s CA is the proportion of area under 
the curve that is not red. His or her CC is the 
proportion of the unshaded area squared plus the 
proportion of the red area squared (which represents 
the probability of being classified in the same category 
on two independent tests). To calculate CA and CC for 
a sample (or group) of examinees, distributions are 
formed and CA and CC are estimated for each 
individual, and then the individual CA and CC 
estimates are averaged to arrive at the marginal CA and 
CC. 

The Lee Approach 

The major difference in the Lee approach is that 
the classifications occur on the total score scale. The 
examinee’s ability estimate is his or her total score x 
and the cut score is also given on the total score scale. 
Even with this emphasis on the total score scale, the 
Lee approach uses the IRT model to create a 
distribution that reflects the uncertainty about the 
examinee’s total score. This is done with a well-known 
recursive algorithm (Lord & Wingersky, 1984). The 
resulting distribution gives the probabilities of each 
total score for the examinee. 

The bottom panel of Figure 1 shows this total 
score distribution for the same examinee as the top 
panel. The examinee’s total score is 28 which is higher 
than the cut score of 27. Note that the total scores 
range from 0 to 46, but only the probable total scores 
are included to aid the comparison with the top panel. 
Just as with the Rudner approach, the proportion in red 
represents the probability of a misclassification. The 
individual CA and CC, as well as the marginal indices, 
are computed in the same manner as described above. 

cacIRT R Code 

 The R package cacIRT provides implementations 
of both the Lee and Rudner approach in a unified 
framework and code syntax.  First a note on the 
following notation. Anything following a > is a 
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command that can be typed into the R console. 
Anything following a # is a comment and is only 
provided for information. After opening R, the first 
step is to install and then load the cacIRT package; the 
installation only occurs the very first time the packag
is used:  

> install.packages(“cacIRT”)#install 
package 

> library(cacIRT) #load package

The response data is in a matrix named 
resp.data , in which each row represents an 
examinee and each column an item. The item 
parameters are in a matrix named item.params
columns for the discrimination, difficulty, and guessing 
parameter respectively. 

Figure 1: Conditional Probability Distributions for a Single 
Examinee with Ability Estimate of 0.37 and Total Score of 
28. Top Panel is from The Rudner Approach. Bottom Panel 
is from The Lee Approach. 

The two main functions in cacIRT are class.Lee and 
class.Rud, and both have help documentation and 
examples that can be accessed by typing in the R 
console: 

> ?class.Lee 

> ?class.Rud 

To estimate CA and CC with the Rudner 
approach, the following code is used (the output is 
stored in an object): 

> outR <- class.Rud(cutscore = .0245, 
ip = item.params,  rdm = resp.data)
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The two main functions in cacIRT are class.Lee and 
class.Rud, and both have help documentation and 
examples that can be accessed by typing in the R 

with the Rudner 
approach, the following code is used (the output is 

class.Rud(cutscore = .0245, 
rdm = resp.data)  

Because the response data matrix is given, the 
function will calculate the MLE ability 
internally and their associated standard errors. The 
marginal CA and CC estimates are accessed by typing:

>  outR$Marginal  
                  Accuracy Consistency

cut at 0.0245 0.8791142   0.8327838

It is often helpful to translate the results 
percentages depending on the audience. For example, a 
randomly selected examinee will be accurately classified 
87.9% of the time. 

Estimating CA and CC with the Lee approach 
requires only slight changes to the code

> outL <- class.Lee(cutscore = 27, ip
item.params,  rdm = resp.data)

which results in a marginal CA estimate of 0.875 and a 
marginal CC estimate of 0.831. With this data and cut 
score, the estimates for CA and CC from the Rudner 
and Lee approach are almost identical. Note that the 
functions class.Lee  and 
accept the calculated IRT-based ability estimates and 
their standard errors, or a theoretical (or simulated) 
distribution of examinees instead of the response data 
matrix and example syntax can be found within the R 
package. 

Discussion

Recall that both the Rudner approach and the Lee 
approach use the same IRT model and item 
parameters, both construct probability distributions for 
each examinee, and both manipulate and aggregate 
those distributions in the same way. The major 
differences are the scale on which the classification 
occurs and in how the examinee uncertainty 
distributions are created. But in the above 
demonstration with a long test of 46 items, both 
approaches produce very similar estimates of CA and 
CC. Also, returning to Figure 1, both approaches have 
a similar understanding of a single examinee’s ability or 
total score regardless of if the uncertainty is estimated 
by the Rudner or Lee approach. Because of the length 
of the test, the distribution of total scor
Lee approach approaches normality thanks to the 
central limit theorem. For shorter tests, the total score 
distributions might be quite non
a problem for the Lee approach). Also, if there is misfit 
or misspecification of the IRT model, both approaches 
might be affected in differential ways. So while similar 
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Discussion 

Recall that both the Rudner approach and the Lee 
approach use the same IRT model and item 
parameters, both construct probability distributions for 
each examinee, and both manipulate and aggregate 
those distributions in the same way. The major two 
differences are the scale on which the classification 
occurs and in how the examinee uncertainty 
distributions are created. But in the above 
demonstration with a long test of 46 items, both 
approaches produce very similar estimates of CA and 

returning to Figure 1, both approaches have 
a similar understanding of a single examinee’s ability or 
total score regardless of if the uncertainty is estimated 
by the Rudner or Lee approach. Because of the length 
of the test, the distribution of total scores under the 
Lee approach approaches normality thanks to the 
central limit theorem. For shorter tests, the total score 
distributions might be quite non-normal (but this is not 
a problem for the Lee approach). Also, if there is misfit 

the IRT model, both approaches 
might be affected in differential ways. So while similar 
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in this demonstration, meaningful differences can and 
will arise depending on the situation. 

In general, the latent ability estimates will differ 
from the total scores. Thus, classification decisions 
based on the ability estimates will differ, to some 
extent, from the classification decisions based on total 
scores. This is why the choice of method is so 
important; it can change some examinees from the Pass 
to the Fail category and vice versa. With the 
demonstration dataset, the overall agreement between 
the two classifications is quite high at 93.3%. Even still, 
there are 192 examinees whose classification decision 
(of Pass or Fail) changes depending on the method of 
classification. Thus, the choice regarding whether to 
use the 3PL ability estimates or the total score affects 
the outcome of the test dramatically for these students. 

It may be an uncomfortable fact for some that 
decisions made during an analysis can impact specific 
examinees in differential ways. But for simple IRT 
models such as the 1PL model, the total score is a 
sufficient statistic for the examinee’s ability, and so 
there should not be any differences in CA and CC. But 
for more complex models, such as the 2PL and 3PL 
models, if the data fits, the latent ability estimate can 
provide more information and therefore make more 
accurate and more consistent classifications (Lathrop & 
Cheng, 2013). If there is evidence that the data fits an 
IRT model beyond the 1PL model, the latent trait 
should be used for the classification. 

So when deciding between the Rudner approach 
and the Lee approach to estimate CA and CC, probably 
the simplest indicator is to consider the scale on which 
the cut score is given and the scale on which the 
classification occurs. If the cut score is given as a total 
score, the Lee approach can be used. If it is given on 
the latent ability scale (or some transformation of it) the 
Rudner approach can be used. But importantly, the 
scale of classification must make sense for the problem 
at hand. For example, in a computerized adaptive test 
where examinees respond to different items and 

possibly different numbers of items, it does not make 
sense to classify examinees based on their total score.  

In short, by providing the above demonstration 
and discussion, hopefully a deeper understanding of 
these methods is possible. By being empowered to 
address the practical issues in these methods, as well as 
having access to the computer implementations 
provided by cacIRT and the above code, researchers 
may have a clearer path to estimate and communicate 
the accuracy and consistency of their classifications. 
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