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Conventional regression analysis is typically used in educational research. Usually such an analysis 
implicitly assumes that a common set of regression parameter estimates captures the population 
characteristics represented in the sample. In some situations, however, this implicit assumption may 
not be realistic, and the sample may contain several subpopulations such as high math achievers and 
low math achievers. In these cases, conventional regression models may provide biased estimates 
since the parameter estimates are constrained to be the same across subpopulations. This paper 
advocates the applications of regression mixture models, also known as latent class regression 
analysis, in educational research. Regression mixture analysis is more flexible than conventional 
regression analysis in that latent classes in the data can be identified and regression parameter 
estimates can vary within each latent class. An illustration of regression mixture analysis is provided 
based on a dataset of authentic data. The strengths and limitations of the regression mixture models 
are discussed in the context of educational research. 

 

Regression models may be one of the most 
commonly used statistical analysis techniques in 
educational research. Typically, regression analysis is 
used to investigate the relationships between a 
dependent variable (either categorical or 
continuous) and a set of independent variables 
based on a sample from a particular population. 
Often the particular interest is placed on assessment 
of the effect of each independent variable on 
dependent variable, and such an effect is considered 
as the average effect value across all subjects in the 
sample. For example, if math achievement scores of 
500 students are regressed on a measure of their 
motivation, the value for the slope or the regression 
coefficient quantifies the average change in math 
achievement across all 500 students for one unit 
change in motivation. What this implies is that these 

500 students are treated as one homogenous group 
regarding motivation influences on math 
achievement, and the implicit assumption is that 
these students are from the same population with 
similar characteristics.  

As will be described later in this paper, the basic 
assumption of a homogeneous group is often not 
realistic.  This paper describes the use of  regression 
mixture models as a tool to study the relationships 
between the dependent variable and a set of 
independent variables by taking into consideration 
unobserved population heterogeneity. 

 BACKGROUND 

The  general regression model found in any basic 
statistics test can be written as   
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 yi = β0 + β1x1 + β2x2 + … + βkxn + εi  (1) 

where β0 is intercept; βk is the regression slope or 
coefficient for a given independent variable k, and 
εi is error term for individual i.  Equation 1 has one 
key feature. It assumes that all individuals are drawn 
from a single population with common population 
parameters.  

However, when a sample consists of various 
groups of individuals such as males and females, or 
different intervention groups, regression analysis 
can be performed to examine whether the effects of 
independent variables on a dependent variable 
differ across groups, either in terms of intercept or 
slope. These groups can be considered from 
different populations (e.g., male population or 
female population), and the population is 
considered heterogeneous in that these 
subpopulations may require different population 
parameters to adequately capture their 
characteristics. Since this source of population 
heterogeneity is based on observed group 
memberships such as gender, the data can be 
analyzed using regression models by taking into 
consideration multiple groups. In the methodology 
literature, subpopulations that can be identified 
beforehand are called groups (e.g., Lubke & 
Muthén, 2005; Muthen, 2001). 

In this paper, nevertheless, special attention is 
devoted to the situations in which population 
heterogeneity is unobserved. In other words, group 
membership of individuals in the population is 
latent (McCutcheon, 1987; Waller & Meehl, 1998). 
For example, students may differ with respect to 
socioemotional development, and they may belong 
to either of two qualitatively different types, such as 
children with high math self-efficacy and children 
with low math self-efficacy. If we were to study the 
effect of socioemotional development on student 
math achievement using a regression model as 
represented in Equation 1, we would evaluate the 
average values of intercept and slope (or rate of 
change) across these two types of students, that is, 
there is one regression line that describes the 
relationships between student socioemotional 
development and math achievement. In this typical 
regression analysis, the investigator assumes that the 

sample is from a homogeneous population and that 
the common parameter estimates are adequate to 
depict the population characteristics represented in 
the sample. In other words, conventional regression 
model assumes that all individuals belong to a single 
population, and independent variables have the 
same influence on dependent variable for all 
individuals. For example, Figure 1 shows the 
association between teacher's rating on child's math 
proficiency level and his/her math test score based 
on a large dataset (the data will be discussed below). 
As can be seen in Figure 1, it is possible that there 
may be some distinct subgroups in the data, 
especially when national representative data are 
involved. If we ignore such heterogeneity in the 
data, regression model in Equation 1 may provide 
biased estimates for the data at hand. For instance, 
it is possible that children with a larger math gain 
may be more influenced by math self-efficacy with 
respect to his/her proficiency level than by school 
environment, while children with low math gain 
may be more influenced by both math self-efficacy 
and school environment. Thus, assumption of 
population homogeneity may not be realistic. As 
another example, the variation in reading 
development among poor readers may be affected 
more by family environment, whereas the variation 
in reading development for good readers may be 
more influenced by teaching methods or vice versa. 
Moreover, the variances of the residuals may also 
differ for these two groups of students, and such 
group differences in variance may contribute to the 
unequal variance across combinations of the levels 
of the independent variables. 

Although the conventional regression model 
captures individual differences in intercept and 
slope, it is not always realistic to assume that a 
single-population model can account for all kinds of 
individual differences.  Regression mixture models 
described here are a part of a general framework of 
finite mixture models (Lubke & Muthén, 2005; 
Muthen, 2001; Muthen & Muthen, 2000; Nagin & 
Tremblay, 2001; Vermunt & Magidson, 2002) and 
can be viewed as a combination of the conventional 
regression model and the classic latent class model 
(Lazarsfeld & Henry, 1968; McCutcheon, 1987). It 
should be noted that there are various types of 
regression 
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Figure 1.  Scatter plot between children’s math proficiency probability scores and teacher’s rating of 
child’s math self-concept of proficiency.  Different color squares may suggest possible existence of 
different subpopulations or latent classes of children in the sample. 

 

mixture models (e.g., Vermunt & Dijk, 2001), but 
this paper will only focus on the linear regression 
mixture model. The following sections will first 
describe some unique characteristics of the linear 
regression mixture model in comparison to the 
conventional linear regression model, including 
integration of covariates into the model. Second, a 
step-by-step regression mixture analysis of empirical 
data demonstrates how the linear regression mixture 
model may be used by incorporating population 
heterogeneity into the model. 

Linear Regression Mixture Models 

This paper focuses on applications of linear 
regression mixture models in the situations where 
population heterogeneity is unobserved (i.e., latent 
class) and observed group variables such as gender 
are incorporated in the analysis as covariates. 

Regression mixture models, also known as latent 
class regression analysis (Andersen, 2004; 
Bouwmeester, Sijtsma, & Vermunt, 2004; Vermunt 
& Magidson, 2005), are used to identify the 
relationships between the dependent variable and a 
set of independent variables along with the number 
of latent classes that best fit the data and to test 
potential predictors for a given latent class. Unlike 
conventional regression analysis, which assumes 
that the regression function in the sample arises 
from a single multivariate normal distribution, linear 
regression mixture model allows for heterogeneous 
regression functions by modeling a mixture of 
distinct multivariate normal distributions, each 
corresponding to a latent class. Individuals within 
each latent class share the same regression function. 

Thus, regression mixture analysis relaxes the 
single population assumption to allow for parameter 
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differences across unobserved subpopulations. This 
is accomplished by using latent classes, which 
implies that individuals vary around different 
regression functions. For example, in a study of the 
factors that may influence student math 
achievement, a researcher may include student self-
efficacy, motivation, teaching methods, and 
classroom size as independent variables. The 
starting point of performing regression mixture 
analysis is first to identify the number of latent 
classes that best fit the data. Then the influences of 
independent variables on the dependent variable 
can be examined within each latent class. It may be 
possible that for a given latent class, only self-
efficacy has any effect on math achievement, while 
for a second latent class, math achievement may be 
influenced by teaching methods and classroom size.  
Combined use of latent classes with regression 
models results in a very flexible analysis framework.  

Since the linear regression mixture model is a 
part of finite mixture models (Muthen, 2001), 
multiple criteria are available to evaluate the number 
of latent classes for regression analysis because 
different indices provide information about 
different aspects of model fit. Comparisons 
between competing models assess relative fit to the 
data. For instance, likelihood ratio test (Lo, 
Mendell, & Rubin, 2001) can be used to compare 
regression mixture models with differing numbers 
of latent classes; a significant chi-square value (e.g., 
p < .05) indicates that the specified model is 
unlikely to be generated by a model with one less 
class. Also selection of a final model can be based 
on information criteria, such as Akaike information 
criterion (Akaike, 1973) or Bayesian information 
criterion (Schwarz, 1978). Lower observed criterion 
values are indicative of improved fit. Another index 
is Entropy (Ramaswamy, DeSarbo, Reibstein, & 
Robinson, 1993), which assesses the classification 
accuracy of placing people into classes based on 
their model-based probabilities. It ranges from 0.00 
to 1.00, with higher values indicating better 
classification. It should be pointed out that although 
a number of model fit statistics can be used to 
evaluate a plausible model, the choice of a final 
model also depends on substantive considerations, 
previous research results, model parsimony, 
consistency with theory, and so on. It is difficult to 
identify the exact number of latent classes that 

represent true population heterogeneity 
(Bouwmeester et al., 2004).      

A general linear regression mixture model can 
be formulated as follows: 

yi(c) = β0(c) + β1(c)x1 + β2(c)x2 + …  

        + βk(c)xk + εi(c)     (2) 

Equation 2 has the appearance of a 
conventional regression model except for the 
subscript c (c = 1, 2, …C). Subscript c in the 
equation indicates that the parameters may vary 
around different latent classes. In other words, 
individuals within each latent class c have the same 
parameter estimates, which, however, differ across 
latent classes. In words, Equation 2 says that a 
dependent variable can be predicted as a function of 
predictor variables, and a C-category latent class 
variable c is included, with each category 
representing a homogenous subpopulation having 
identical regression coefficients. As mentioned 
earlier, different types of regression mixture models 
exist. Depending on the scale type of the dependent 
variable, various regression mixture models can be 
estimated. For instance, if a dependent variable is 
continuous, the linear regression mixture model can 
be performed, as shown in Equation 2. On the 
other hand, if the dependent variable is 
dichotomous or nominal, binary or multinomial 
logistic regression mixture analysis can be 
formulated and performed, which would require a 
substantially different model. Moreover, for models 
containing C > 1 latent classes, covariates such as 
gender can be included in the model to improve 
classification of each case into the most likely class, 
that is, covariates can be used to predict the latent 
class membership.     

Although there are a few software programs 
that can perform regression mixture analysis, the 
major computer programs for such an analysis are 
Mplus (Muthen & Muthen, 2001), GLLAMM 
(Skrondal & Rabe-Hesketh, 2004), or LatentGold 
(Vermunt & Magidson, 2005). In the following 
section, the LatentGold 4.0 program was used to 
demonstrate the linear regression mixture analysis 
based on a dataset of real data.  
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Illustration Of Regression Mixture Analysis 

A concrete example in this section provides an 
illustration of how relationships between 
independent variables and a dependent variable in 
the potential presence of population heterogeneity 
may be investigated with the linear regression 
mixture model. The latent class variable c is used to 
model unknown heterogeneity, whereas observed 
group membership variables that are known to 
introduce heterogeneity are treated as covariates.  In 
linear regression mixture analysis, one needs to 
specify the number of latent classes. In the model 
estimation process, the parameters of the model are 
estimated and the posterior probabilities with which 
each individual belongs to each of the classes are 
computed. The results include the model 
parameters such as within class regression 
coefficients, within class R2, within class error 
variance, etc., and the posterior class probabilities 
for each individual.  

RESEARCH QUESTIONS 

To illustrate linear regression mixture analysis in 
comparison to conventional regression analysis, this 
example is framed around the following research 
questions: 

1. What is the relationship between children’s 
fifth grade math achievement, children’s math 
self-concept, and teacher’s rating on of 
children’s math proficiency, approaches to 
learning, and self-control?   

 This research question addressed the issues of 
(a) whether self-reported math self-concept is 
predictive of children’s math achievement; (b) how 
predictive teacher judgments of students’ academic 
performance are; and (c) whether teachers’ 
assessment of children’s adaptive behaviors and 
approach to learning predicts children’s math 
achievement. 

Marsh, Relich, and Smith (1983) found that 
math self-concept was most highly correlated with 
math achievement (r = 0.55). In addition, it has 
been found that teacher judgment of children’s 
academic competence has concurrent or predictive 
validity. For example, Hoge and Butcher (1984) 
found a regression coefficient of 0.71 between 

teacher’s judgment and student’s actual scores on 
standardized tests. In the studies they reviewed, 
Hoge and Coladarci (1989) indicated that judgment 
accuracy ranged from 0.28 to 0.92, with median 
correlation of 0.66. Thus, it would be interesting to 
replicate such a finding using a national 
representative sample of actual children.  

Regarding teacher’s rating of children’s social 
competence, extensive research has taken place 
regarding the importance of social competence and 
the skills that contribute to that competence. Social 
competence has been found to be a significant 
predictor of academic achievement from K through 
sixth grade (Clark, Gresham, & Elliot, 1985). On a 
study of fifth-graders, Walker, Stieber, and Eisert 
(1991) have found teachers ratings of social skills to 
be the best predictor of future academic 
achievement, school adjustment, and delinquency in 
the next three year period. Therefore, teacher’s 
ratings on approach to learning and self-control 
were used to see whether some of the findings 
could be replicated.   

2. Do children in different latent classes vary in 
terms of children’s gender and race?  

It is important to note that many of the 
variables may be related to children’s math 
achievement, and they are not explored in this 
investigation. The variables examined here were just 
a few of the variables that can/should be examined 
in the data and were selected to demonstrate the 
range of information that may be obtained from the 
linear regression mixture analysis and may help 
shape the design for the future studies. Readers, 
however, are cautioned not to draw definitive causal 
inferences based on the results presented in this 
example, but rather focus on the proposed analysis 
paradigm. 

METHODOLOGY 

Data   

The data used in this illustrative analysis were from 
the Early Childhood Longitudinal Study (ECLS), an 
ongoing study by the U.S. Department of 
Education, National Center for Education Statistics 
that focuses on children’s early school experiences 
beginning with kindergarten (Tourangeau, Nord, 
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Lê, Pollack, & Atkins-Burnett, 2006). The study 
follows a nationally representative sample of 
children from kindergarten through fifth grade. The 
sample reflected all children from various racial and 
language background. Sampling for the ECLS was 
based on a dual frame, multi-stage sampling design, 
with 100 primary sampling units (PSU). For 
simplicity, only the data collected during 2004 from 
the fifth graders was in this paper. The sample size 
in the current analysis was 1,342 children, which 
included 650 males and 692 females. Among the 
total analysis sample of children, 797 were White, 
126 were Black, 230 were Hispanic, 141 were Asian, 
and 48 were multiracial.  

Measures 

In the present analysis, four measures are used as 
independent variables. They are: 

Self-Description Questionnaire—Math Self-Concept 
(Marsh, 1990). This measure assesses how children 
think and feel about themselves in terms of math 
competence. This scale includes eight items on 
math grades, the difficulty of math work, and 
interest in and enjoyment of math, with the score 
scale ranged from 1 to 4. The analysis used the 
average score of each participant.  

Academic Rating Scale-Math. This is the teacher’s 
rating of children’s academic performance in math. 
Teachers were asked to rate each child’s proficiency 
in the following areas: number concepts, 
measurement, operation, geometry, math strategies, 
and beginning algebraic thinking, with the score 
scale ranged from 1 to 5. The analysis used the 
average score of each participant.  

Social Rating Scale-Approach to Learning. This is the 
teacher’s judgment of children’s social competence. 
The approach to learning scale measures behaviors 
that affect the ease with which children can benefit 
from the learning environment. It includes six items 
that rate the child’s attentiveness, task persistence, 
eagerness to learn, learning independence, 
flexibility, organization, and following classroom 
rules, with the score scale ranged from 1 to 4. The 
analysis used the average score of each participant.  

Social Rating Scale-Self-Control.  It has four items that 
rate the child’s ability to control behavior by 

respecting the property rights of others, controlling 
temper, accepting peer ideas for group activities, 
and responding appropriately to peer pressure, with 
the score scale ranged from 1 to 4. The analysis 
used the average score of each participant.  

In all above measures, the scores were coded 
positively, with high scores indicating higher self-
concept, and higher teacher rating on academic and 
social competence. The reported reliability for these 
independent variables ranged from .79 to .92 
(Tourangeau et al., 2006). 

Analysis 

The dependent variable used is a composite math 
proficiency probability score that was computed as 
an average across nine math skill levels: 
count/number, relative size, ordinality/ sequence, 
add/subtract, multiple/divide, place value, rate and 
measurement, fractions, and area/volume. The 
probability scores were from 0.00 to 1.00, with a 
larger probability score indicating an overall higher 
achievement across these math skill levels.  

In addition, children’s gender and race are 
included as covariates. They are used to increase the 
classification accuracy of individuals into each latent 
class. In this paper, children’s race is represented in 
five categories: White, Black, Hispanic, Asian 
(which includes Pacific Islanders and American 
Indians), and multiracial.    

Since the scores of dependent variable used are 
continuous, the appropriate regression mixture 
model is a linear analysis. The analysis is exploratory 
with respect to the sources of latent population 
heterogeneity. Commonly, a key interest in an 
exploration of population heterogeneity is to 
determine the number of latent classes that best fit 
the data. 

Therefore, regression mixture models ranging 
from a 1-class latent model to a 4-class mixture 
model are tested. The analysis was performed using 
LatentGold 4.0. In all of these models, the 
dependent variable is math proficiency probability 
scores, and the same set of independent variables is 
used, with child’s gender and race as covariates. 
Among these four models, we sought a model with 
smallest AIC information criterion values. After 4 
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classes were extracted, a 3-class regression model 
performed somewhat better than other models, 
with AIC being smallest. It was interesting to notice 
that the model with 1-class had the largest AIC in 
comparison with other models, which suggested 
population homogeneity was not likely to be a 
realistic assumption in the sample. Based on 
empirical and substantive consideration, the 3-class 
linear regression model was selected as optimal. In 
this 3-class model, regression coefficients and error 
variance were class dependent, that is, they were 
freely estimated without any equality constraints.   

RESULTS 

Table 1 provides the regression coefficients for 
each of the three latent classes, along with the 
estimated class proportions and the mean math 
probability scores. Table 2 shows the classification 
profile information. It can be seen that for Class 1, 
which consisted of 57% of the sample, math 
achievement was significantly associated with only 
teacher’s rating on math competence. This variable 
only accounted for about 49% of the variance in 
math achievement. What this implied was that for 
individuals within this class teacher judgment of 
these children’s math competence was statistically 
accurate in predicting their actual achievement.  
Other information provided in the analysis, as 
shown under Covariates in Table 1, was that male 
children were more likely to be members of Class 1 
than female children, and White children were also 
likely to be members of Class 1 than children of 
other ethnical background. The class proportion 
size for Class 1 suggested (as shown in Table 2) 
57% were male children and 43% were female 
children. White children consisted of 82% of Class 
1 individuals.    

For individuals in latent Class 2, their math 
achievement was significantly associated with 
teacher rating on math competence and on 
approach to learning. These two variables 
accounted for about 63% of variances in math 

achievement. Thus, it seemed that children with 
higher math achievement had a higher teacher 
rating on math competence and approach to 
learning. This class consisted of 39% of the total 
sample, of which 61% were female children and 
39% were male children. Class 2 also had 33% 
White children, 18% Black children, 29% Hispanic 
children, 16% Asian children, and 4% of multiracial 
children (see Table 2).   

For Class 3, children’s math achievement was 
significantly associated with children’s math self-
concept, teacher rating of math competence and of 
self-control. Children with high math score, thus, 
tended to report a higher math self-concept and had 
a higher teacher rating for math competence and 
self-control. There was some information about 
children in Class 3 that was interesting to note: (1) 
about 95% of the variance in math achievement was 
accounted for by these three variables; (2) this class 
consisted of about 4% of the total sample, of which 
75% were female children; (3) among these 4% 
children, 62% were Asian, 15% were Hispanic, 14% 
were multiracial, 8% Black, and about 1% were 
White (see Table 2); and (4) White children were 
less likely to be members of this class (� = -2.73, p 
< .05). 

To contrast the linear regression mixture model 
with the conventional regression analysis, a 
conventional regression analysis was performed 
with the same dependent variable and independent 
variables, while controlling for gender and race. The 
results are shown in the last column of Table 1. It 
can be seen that children’s math achievement was 
significantly related to child’s math self-concept, 
teacher rating on math competence, and teacher 
rating of approach to learning. Teacher rating of 
child’s self-control was not significantly related to 
math achievement. Thus, the conclusion could be 
that on average children who had high math scores 
tended to report high self-concept in math and had 
higher teacher ratings of math competence and 
approach to learning. 

 



Practical Assessment Research & Evaluation, Vol 11, No 11 8 
Ding, Regression Mixture Analysis 
 

Table 1.Parameter Estimates and Model-Based Class Size 
 Class 1 Class 2 Class 3  

Class proportion size 57% 39% 4%  
Mean math prob. scores .75 .63 .66  
 Regression Coefficients β b

Math Self-concept 0.006 
(0.005) 

0.005 
(0.005) 

0.034* 
(0.008) 

0.006* 
(0.003) 
 

ARS-Math 0.084** 
(0.006) 

0.097** 
(0.005) 

0.065* 
(0.017) 

0.089** 
(0.004) 
 

SRS—Learning 0.015 
(0.008) 

0.026* 
(0.006) 

0.028 
(0.078) 

0.023** 
(0.006) 
 

SRS-Self-Control 0.005 
(0.007) 

-0.016 
(0.015) 

0.22** 
(0.033) 

-0.0003 
(0.006) 
 

Error Variance 0.005** 0.003** 0.001 0.065 
R2 0.49 0.63 0.94 0.44 

Covariates     
     Gender     

Male  0.519a -0.044 -0.475  
Female -0.519  0.044  0.475  

     Race     
White  2.320a  0.409 -2.730a  
Black -0.525  0.401   0.123  

Hispanic -0.196  0.168   0.027  
Asian -1.234 -0.351   1.586  

Multiracial -0.363 -0.628 0.992  
Note.  Standard errors are in parentheses.  a indicates regression coefficients 
significantly differ from zero at p < .05.  b indicates regression coefficients from 
conventional regression analysis.   * p < .05.  
 

 
 

Table 2. Covariates Associated With Latent Class Membership 
 Class1 Class2 Class3 
Covariates    
    Gender    

Male 56.63% 38.81% 25.36% 
Female 43.37% 61.19% 74.64% 

    Race    
White 82.21% 32.62% 0.81% 
Black 3.43% 18.47% 7.96% 

Hispanic 8.99% 28.87% 14.84% 
Asian 3.05% 15.63% 62.32% 

Multiracial 2.32% 4.40% 14.07% 
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CONCLUSIONS 

To address the research question regarding 
relationship between children’s math achievement 
with math self-concept and teacher judgment of 
math competence and of social competence, the 
findings indicated that teacher judgment of math 
competence was statistically accurate in predicting 
children’s math performance across all three latent 
classes. This was a quite robust finding and 
replicated the previous findings about accuracy of 
the teacher judgment (e.g., Hoge & Butcher, 1984). 
However, child’s math self-concept and teacher 
ratings of their approach to learning and self-
control were statistically significantly associated with 
math achievement only for distinct subgroups of 
children. That is, this relationship depended on 
types of children in the population. Thus, the 
previous findings concerning this association were 
replicated only for some children, particularly 
children of specific ethnic groups. For instance, 
teacher rating of self-control was found to be 
statistically significantly related to math 
performance for children who consisted of only 4% 
of the sample, and 62% of whom were Asian 
children, and 75% of whom were female children.  
It was interesting to note that if the conclusions 
were based on the results from conventional 
regression analysis, then the previous findings 
would be replicated in that child’s math self-concept 
would be a strong predicator of actual math 
performance (Marsh et al., 1983), of social 
competence, and of approach to learning; however, 
self-control would NOT be predicative of math 
performance (e.g., Clark et al., 1985) for “average” 
children. Population heterogeneity in the sample, 
therefore, would be completely overlooked and 
valuable information regarding differential 
subgroup performance would be lost in explaining 
mathematics achievement.     

DISCUSSION 

Regression mixture models are a tool to 
investigate population heterogeneity. As anticipated, 
this application of regression mixture modeling to 
an actual data set indicated that multiple latent 
classes might be embedded with the single 
regression functional form. Compared to 
conventional regression analysis that assumes one 

equation would fit all individuals, a regression 
mixture analysis can provide a detailed description 
of subpopulations of individuals within a sample. In 
the illustration, the conventional regression analysis 
revealed only average results across all children, the 
error variance was quite large, and R2 was quite 
small in comparison to the results of linear 
regression mixture analysis. For instance, the error 
variance was close to zero and R2 was 0.94 for Class 
3, indicating a good fit between the model and the 
data from these individuals. In contrast, the 
conventional regression model had a inferior 
model-data fit. Thus, regression mixture models 
may improve predictability because the individual 
differences are systematically classified to form 
homogeneous groups.  The regression mixture 
analysis resulted in subpopulations with specific 
patterns of regression function, and with differing 
proportions of female and ethnical children. 

It should be pointed out that regression mixture 
modeling is a different analytical technique for 
studying population heterogeneity than multiple 
group modeling. The purpose of regression mixture 
analysis is to identify differing regression functions 
across latent classes, and such an approach is 
appropriate if the interest is in detecting and 
characterizing the relationships among variables 
according to subpopulations of individuals. The 
observed grouping variables such as gender may be 
used as covariates to help predict the latent class 
membership. For instance, in the illustration, Class 
1 is predicted by gender and race, while Class 2 is 
not predicted by either grouping variables. Thus, 
the latent class has a different interpretation, and it 
is used to describe a different kind of heterogeneity 
in the sample.  But one should realize that 
classification of individual into latent classes is 
model dependent and it is not intrinsic to the 
individuals in the sample (Lubke & Muthén, 2005). 
On the other hand, the purpose of multiple group 
regression analysis is to compare these groups with 
respect to their regression functions, and the 
observed group membership is an intrinsic 
characteristic of the individual (such as individuals 
are either male or female). 

Regression mixture analysis is not without its 
limitations. First is the determination of the proper 
number of latent classes in the data. As Bauer and 
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Curran (2003) suggested,, mixture modeling can 
detect population heterogeneity as well as 
distribution skewness. If there exists non-normality 
within class, non-normality of observed variables, 
or non-linearity, the latent class may simply describe 
the skewness, and may not reflect latent classes of 
individuals in the sample. Thus, in addition to 
ensuring the normality and linearity assumptions, 
one should also consider at a conceptual level 
whether an additional class is providing meaningful 
information about the heterogeneity.  

Second, a model identification index such as 
AIC may not provide sufficient evidence for models 
of heterogeneity (Bauer & Curran, 2004). There is 
no consensus, so far, regarding which model 
identification index can be used to select “best” 
models. Therefore, ambiguity in model selection 
will continue. In this paper, linear regression 
mixture analysis is used as one possible way of 
exploring the data; such an approach is similar to 
conventional exploratory regression analysis and 
results should be regarded as preliminary. 
Independent replication of the study would be 
essential for generalizing the results.   

Readers should keep these limitations in mind 
when applying regression mixture models. But it 
seems that regression mixture models are a useful 
tool and can be used to model heterogeneity in 
regression function, thus leading to improved 
regression solutions. In a sense, conventional 
regression models are a special case of regression 
mixture models where only one class is assumed 
and aggregate regression function is concerned. 
However, it would be necessary to investigate this 
constraint that a set of common parameter 
estimates is sufficient to capture the population 
characteristics.  Regression mixture models, on the 
other hand, places the regression structure in a 
much more flexible way. 
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