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Exploratory factor analysis (EFA) is a complex, multi-step process. The goal of this paper is
to collect, in one article, information that will allow researchers and practitioners to
understand the various choices available through popular software packages, and to make
decisions about “best practices” in exploratory factor analysis.  In particular, this paper
provides practical information on making decisions regarding (a) extraction, (b) rotation, (c)
the number of factors to interpret, and (d) sample size.

Exploratory factor analysis (EFA) is a widely
utilized and broadly applied statistical technique in the
social sciences. In recently published studies, EFA
was used for a variety of applications, including
developing an instrument for the evaluation of school
principals (Lovett, Zeiss, & Heinemann, 2002),
assessing the motivation of Puerto Rican high school
students (Morris, 2001), and determining what types
of services should be offered to college students
(Majors & Sedlacek, 2001). 

A survey of a recent two-year period in
PsycINFO yielded over 1700 studies that used some
form of EFA. Well over half listed principal
components analysis with varimax rotation as the
method used for data analysis, and of those
researchers who report their criteria for deciding the
number of factors to be retained for rotation, a
majority use the Kaiser criterion (all factors with
eigenvalues greater than one).  While this represents
the norm in the literature (and often the defaults in
popular statistical software packages), it will not
always yield the best results for a particular data set. 

EFA is a complex procedure with few absolute
guidelines and many options.  In some cases, options
vary in terminology across software packages, and in
many cases particular options are not well defined.
Furthermore, study design, data properties, and the
questions to be answered all have a bearing on which
procedures will yield the maximum benefit.  

The goal of this paper is to discuss common
practice in studies using exploratory factor analysis,
and provide practical information on best practices in
the use of EFA. In particular we discuss four issues:
1) component vs. factor extraction, 2) number of
factors to retain for rotation, 3) orthogonal vs.
oblique rotation, and 4) adequate sample size. 

BEST PRACTICE

Extraction: Principal Components vs. Factor
Analysis

PCA (principal components analysis) is the default
method of extraction in many popular statistical
software packages, including SPSS and SAS, which
likely contributes to its popularity.  However, PCA is
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not a true method of factor analysis and there is
disagreement among statistical theorists about when
it should be used, if at all. Some argue for severely
restricted use of components analysis in favor of a
true factor analysis method (Bentler & Kano, 1990;
Floyd & Widaman, 1995; Ford, MacCallum & Tait,
1986; Gorsuch, 1990; Loehlin, 1990; MacCallum &
Tucker, 1991; Mulaik, 1990; Snook & Gorsuch, 1989;
Widaman, 1990, 1993). Others disagree, and point out
either that there is almost no difference between
principal components and factor analysis, or that PCA
is preferable (Arrindell & van der Ende, 1985;
Guadagnoli and Velicer, 1988; Schoenmann, 1990;
Steiger, 1990; Velicer & Jackson, 1990). 

We suggest that factor analysis is preferable to
principal components analysis. Components analysis
is only a data reduction method. It became common
decades ago when computers were slow and
expensive to use; it was a quicker, cheaper alternative
to factor analysis (Gorsuch, 1990). It is computed
without regard to any underlying structure caused by
latent variables; components are calculated using all of
the variance of the manifest variables, and all of that
variance appears in the solution (Ford et al., 1986).
However, researchers rarely collect and analyze data
without an a priori idea about how the variables are
related (Floyd & Widaman, 1995). The aim of factor
analysis is to reveal any latent variables that cause the
manifest variables to covary. During factor extraction
the shared variance of a variable is partitioned from
its unique variance and error variance to reveal the
underlying factor structure; only shared variance
appears in the solution. Principal components analysis
does not discriminate between shared and unique
variance. When the factors are uncorrelated and
communalities are moderate it can produce inflated
values of variance accounted for by the components
(Gorsuch, 1997; McArdle, 1990). Since factor analysis
only analyzes shared variance, factor analysis should
yield the same solution (all other things being equal)
while also avoiding the inflation of estimates of
variance accounted for. 

Choosing a Factor Extraction Method

There are several factor analysis extraction
methods to choose from. SPSS has six (in addition to
PCA; SAS and other packages have similar options):
unweighted least squares, generalized least squares,
maximum likelihood, principal axis factoring, alpha
factoring, and image factoring.  Information on the

relative strengths and weaknesses of these techniques
is scarce, often only available in obscure references.
To complicate matters further, there does not even
seem to be an exact name for several of the methods;
it is often hard to figure out which method a textbook
or journal article author is describing, and whether or
not it is actually available in the software package the
researcher is using. This probably explains the
popularity of principal components analysis – not
only is it the default, but choosing from the factor
analysis extraction methods can be completely
confusing. 

A recent article by Fabrigar, Wegener, MacCallum
and Strahan (1999) argued  that if data are relatively
normally distributed, maximum likelihood is the best
choice because “it allows for the computation of a
wide range of indexes of the goodness of fit of the
model [and] permits statistical significance testing of
factor loadings and correlations among factors and
the computation of confidence intervals.” (p. 277). If
the assumption of multivariate normality is “severely
violated” they recommend one of the principal factor
methods; in SPSS this procedure is called "principal
axis factors" (Fabrigar et al., 1999).  Other authors
have argued that in specialized cases, or for particular
applications, other extraction techniques (e.g., alpha
extraction) are most appropriate, but the evidence of
advantage is slim.  In general, ML or PAF will give
you the best results, depending on whether your data
are generally normally-distributed or significantly non-
normal, respectively.

Number of Factors Retained

After extraction the researcher must decide how
many factors to retain for rotation. Both
overextraction and underextraction of factors retained
for rotation can have deleterious effects on the
results. The default in most statistical software
packages is to retain all factors with eigenvalues
greater than 1.0.There is broad consensus in the
literature that this is among the least accurate methods for
selecting the number of factors to retain (Velicer &
Jackson, 1990). In monte carlo analyses we performed
to test this assertion, 36% of our samples retained too
many factors using this criterion. Alternate tests for
factor retention include the scree test, Velicer’s MAP
criteria, and parallel analysis (Velicer & Jackson,
1990). Unfortunately the latter two methods, although
accurate and easy to use, are not available in the most
frequently used statistical software and must be
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calculated by hand. Therefore the best choice for
researchers is the scree test. This method is described
and pictured in every textbook discussion of factor
analysis, and can also be found in any statistical
reference on the internet, such as StatSoft’s electronic
textbook at http://www.statsoft.com/textbook/
stathome.html.

The scree test involves examining the graph of the
eigenvalues (available via every software package) and
looking for the natural bend or break point in the data
where the curve flattens out.  The number of
datapoints above the “break”  (i.e., not including the
point at which the break occurs) is usually the number
of factors to retain, although it can be unclear if there
are data points clustered together near the bend. This
can be tested simply by running multiple factor
analyses and setting the number of factors to retain
manually – once at the projected number based on
the a priori factor structure, again at the number of
factors suggested by the scree test if it is different
from the predicted number, and then at numbers
above and below those numbers. For example, if the
predicted number of factors is six and the scree test
suggests five then run the data four times, setting the
number of factors extracted at four, five, six, and
seven. After rotation (see below for rotation criteria)
compare the item loading tables; the one with the
“cleanest” factor structure – item loadings above .30,
no or few item crossloadings, no factors with fewer
than three items – has the best fit to the data. If all
loading tables look messy or uninterpretable then
there is a problem with the data that cannot be
resolved by manipulating the number of factors
retained. Sometimes dropping problematic items
(ones that are low-loading, crossloading or
freestanding) and rerunning the analysis can solve the
problem, but the researcher has to consider if doing
so compromises the integrity of the data. If the factor
structure still fails to clarify after multiple test runs,
there is a problem with item construction, scale
design, or the hypothesis itself, and the researcher
may need to throw out the data as unusable and start
from scratch. One other possibility is that the sample
size was too small and more data needs to be
collected before running the analyses; this issue is
addressed later in this paper.

Rotation

The next decision is rotation method. The goal of
rotation is to simplify and clarify the data structure.

Rotation cannot improve the basic aspects of the
analysis, such as the amount of variance extracted
from the items.  As with extraction method, there are
a variety of choices. Varimax rotation is by far the
most common choice. Varimax, quartimax, and
equamax are commonly available orthogonal methods
of rotation; direct oblimin, quartimin, and promax are
oblique. Orthogonal rotations produce factors that are
uncorrelated; oblique methods allow the factors to
correlate.  Conventional wisdom advises researchers
to use orthogonal rotation because it produces more
easily interpretable results, but this is a flawed
argument. In the social sciences we generally expect
some correlation among factors, since behavior is
rarely partitioned into neatly packaged units that
function independently of one another. Therefore
using orthogonal rotation results in a loss of valuable
information if the factors are correlated, and oblique
rotation should theoretically render a more accurate,
and perhaps more reproducible, solution. If the
factors are truly uncorrelated, orthogonal and oblique
rotation produce nearly identical results.

Oblique rotation output is only slightly more
complex than orthogonal rotation output.  In SPSS
output the rotated factor matrix is interpreted after
orthogonal rotation; when using oblique rotation the
pattern matrix is examined for factor/item loadings and
the factor correlation matrix reveals any correlation
between the factors. The substantive interpretations
are essentially the same.

There is no widely preferred method of oblique
rotation; all tend to produce similar results (Fabrigar
et al., 1999), and it is fine to use the default delta (0)
or kappa (4) values in the software packages.
Manipulating delta or kappa changes the amount the
rotation procedure “allows” the factors to correlate,
and this appears to introduce unnecessary complexity
for interpretation of results. In fact, in our research
we could not even find any explanation of when, why,
or to what one should change the kappa or delta
settings.

Sample Size

To summarize practices in sample size in EFA in
the literature, we surveyed two years’ worth of
PsychINFO articles that both reported some form of
principal components or exploratory factor analysis
and listed both the number of subjects and the
number of items analyzed (N = 303). We decided the
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best method for standardizing our sample size data
was subject to item ratio, since we needed a criterion
for a reasonably direct comparison to our own data
analysis. In the studies reporting scale construction,
the number of items in the initial item pool were
recorded rather than the number of items kept for the
final version of the scale, since the subject to item
ratio is determined by how many items each subject
answered or was measured on, not how many were
kept after analysis. The results of this survey and are
summarized in Table 1. A large percentage of

researchers report factor analyses using relatively
small samples.  In a majority of the studies in our
survey (62.9%) researchers performed analyses with
subject to item ratios of 10:1 or less, which is an early
and still-prevalent rule-of-thumb many researchers
use for determining a priori sample size.  A
surprisingly high proportion (almost one-sixth)
reported factor analyses based on subject to item
ratios of only 2:1 or less. The effects of small samples
on EFA analyses are discussed later in this paper.

Table 1:  Current Practice in Factor Analysis

Subject to item
ratio

% of 

studies

Cumulative
%

2:1 or less 14.7% 14.7%

> 2:1,  # 5:1 25.8% 40.5%

> 5:1,  # 10:1 22.7% 63.2%

> 10:1,  # 20:1 15.4% 78.6%

> 20:1,  # 100:1 18.4% 97.0%

> 100:1   3.0% 100.0%

Strict rules regarding sample size for exploratory
factor analysis have mostly disappeared.  Studies have
revealed that adequate sample size is partly
determined by the nature of the data (Fabrigar et al.,
1999; MacCallum, Widaman, Zhang, & Hong, 1999).
In general, the stronger the data, the smaller the
sample can be for an accurate analysis. “Strong data”
in factor analysis means uniformly high
communalities without cross loadings, plus several
variables loading strongly on each factor. In practice
these conditions can be rare (Mulaik, 1990; Widaman,
1993). If the following problems emerge in the data,
a larger sample can help determine whether or not the
factor structure and individual items are valid: 

1) Item communalities are considered “high” if they
are all .8 or greater (Velicer and Fava, 1998) – but this
is unlikely to occur in real data. More common
magnitudes in the social sciences are low to moderate
communalities of .40 to .70. If an item has a

communality of less than .40, it may either a) not be
related to the other items, or b) suggest an additional
factor that should be explored. The researcher should
consider why that item was included in the data and
decide whether to drop it or add similar items for
future research.  (Note that these numbers are
essentially correlation coefficients, and therefore the
magnitude of the loadings can be understood
similarly).

2) Tabachnick and Fidell (2001) cite .32 as a good rule
of thumb  for the minimum loading of an item, which
equates to approximately 10% overlapping variance
with the other items in that factor. A “crossloading”
item is an item that loads at .32 or higher on two or
more factors. The researcher needs to decide whether
a crossloading item should be dropped from the
analysis, which may be a good choice if there are
several adequate to strong loaders (.50 or better) on
each factor. If there are several crossloaders, the items
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may be poorly written or the a priori factor structure
could be flawed. 

3) A factor with fewer than three items is generally
weak and unstable; 5 or more strongly loading items
(.50 or better) are desirable and indicate a solid factor.
With further research and analysis it may be possible
to reduce the item number and maintain a strong
factor; if there is a very large data set.

In general, we caution researchers to remember
that EFA is a “large-sample” procedure; generalizable
or replicable results are unlikely if the sample is too
small.  In other words, more is better.  

METHODOLOGY  

The purpose of this section is to empirically
demonstrate the effects of various recommendations
we made above.

For this study we used real data to examine the
effects of 1) principal components analysis vs.
maximum likelihood (ML) extraction, 2) orthogonal
vs. oblique rotation, and 3) various sample sizes. Our
goal was to utilize methods that most closely simulate
real practice, and real data, so that our results will
shed light on the effects of current practice in
research. For our purposes it was important to have
a known population.  We operationally defined a very
large sample as our “population” to provide
population parameters for comparison with EFA
results. 

Data Source. Data for this study were drawn from
the first follow-up data set of the National Education
Longitudinal Study (NELS88; for an overview of this
sample, see NCES, 1992), using a sample of 24,599
students who completed Marsh's Self-Description
Questionnaire (SDQ II). Marsh's self-concept scale is
constructed from a hierarchical facet model of a
dimensionalized self; it draws on both generalized and
domain-specific self-concepts and has well-known
and desirable psychometric properties (e.g., Marsh,
1990). We chose this data set because it is very large,
accessible to everyone, and easily adapted for this
study; the results of our analyses are applicable across
all fields of social science research.

The full data set of 24,599 students was
operationally defined as the population for the
purposes of this study. In the NELS88, five of
Marsh’s subscales were used (relations with parents,
language self-concept, math self-concept, opposite sex

relationships, same sex relationships). We excluded
the last two subscales from our analyses because there
are different subscales for males and females..  The
remaining  subscales (parents, language, math) show
good reliability, both in other studies (Marsh, 1990)
and in this particular data set, with Cronbach’s alphas
of .84 to .89.  This measure also shows a very clear
factor structure.  When analyzed using maximum
likelihood extraction with direct oblimin rotation
these three subscales form three strong factors
(eigenvalues of 4.08, 2.56, and 2.21).  Factor loadings
for this scale are also clear, with high factor loadings
(ranging from .72 to .87, .72 to .91, and .69 to .83 on
the three factors) and minimal cross-factor loadings
(none greater than .17).  

 Extraction and rotation. The entire “population”
of 24,599 subjects was analyzed via principal
components analysis (PCA) and maximum likelihood
(ML) extraction methods, followed by both
orthogonal (varimax) and oblique (direct oblimin)
rotations.  

Sample size. Samples were drawn from the entire
population via random sampling with replacement.
We extracted twenty samples at the 2:1, 5:1, 10:1, and
20:1 subject to item ratios, creating sample sizes of N
= 26, 65, 130, and 260. The samples drawn from the
population data were analyzed using maximum
likelihood extraction with direct oblimin rotation, as
suggested above. For each sample, the magnitude of
the eigenvalues, the number of eigenvalues greater
than 1.0, the factor loadings of the individual items,
and the number of items incorrectly loading on a
factor were recorded. In order to assess accuracy as a
function of sample size, we computed average error
in eigenvalues and average error in factor loadings. We
also recorded aberrations such as Heywood cases
(occasions when a loading exceeds 1.0) and instances
of failure for ML to converge on a solution after 250
iterations. 

Finally, a global assessment of the correctness or
incorrectness of the factor structure was made. If a
factor analysis for a particular sample produced three
factors, and the items loaded on the correct factors
(all five parent items loaded together on a single
factor, all language items loaded together on a single
factor, all math items loaded together on a single
factor), that analysis was considered to have produced
the correct factor structure (i.e., a researcher drawing
that sample, and performing that analysis, would draw
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the correct conclusions regarding the underlying
factor structure for those items).  If a factor analysis
produced an incorrect number of factors with
eigenvalues greater than 1.0 (some produced up to 5),
or if one or more items failed to load on the
appropriate factor, that analysis was considered to
have produced an incorrect factor structure (i.e., a
researcher drawing that sample, and performing that
analysis, would not draw the correct conclusions
regarding the underlying factor structure).  

RESULTS AND DISCUSSION

Extraction Method. The results of these analyses are

presented in Table 2.  Both extraction methods
produced identical eigenvalues after extraction, as
expected.  However, PCA resulted in a significantly
higher total variance accounted for. Item loadings
were also higher for PCA with both orthogonal
(varimax) and oblique (direct oblimin) rotations. This
happens because PCA does not partition unique
variance from shared variance so it sets all item
communalities at 1.0, whereas ML estimates the level
of shared variance (communalities) for the items,
which ranged from .39 to .70 – all much 

Table 2:  Comparison of Extraction and Rotation Methods (N = 24,599)

Rotation Method Principal Components Maximum Likelihood
Orthogonal Oblique Orthogonal Oblique

Variance Accounted for
after Rotation 68.0% * 59.4% *

Item Loadings
   Factor 1 Item 1 0.84 0.84 0.77 0.78

Item 2 0.86 0.88 0.82 0.84

Item 3 0.87 0.87 0.84 0.85

Item 4 0.72 0.72 0.61 0.61

     Factor 2 Item 1 0.91 0.92 0.89 0.90

Item 2 0.89 0.89 0.86 0.86

Item 3 0.90 0.91 0.88 0.88

Item 4 0.72 0.72 0.60 0.60

     Factor 3 Item 1 0.77 0.78 0.71 0.72

Item 2 0.76 0.78 0.66 0.68

Item 3 0.83 0.84 0.82 0.83

Item 4 0.69 0.68 0.59 0.58

Item 5 0.79 0.80 737.00 0.75

* cannot compute total variance after oblique rotation due to correlation of factors

fewer than 1. For this data set the difference between
PCA and ML in computing item loadings is minimal,
but this is due to the sheer size of the sample (N =
24,599). With smaller data sets the range – and room
for error – is much greater, as discussed below.   In
these analyses, factor analysis produced an average
variance accounted for of 59.8%, while principal
components analysis showed a variance accounted for

of 69.6% -- an over-estimation of 16.4%.1   PCA also
produced inflated item loadings in many cases.  In
sum, ML will produce more generalizable and
reproducible results, as it does not inflate the variance
estimates.

Rotation Method. We chose a scale designed to have
orthogonal factors.  Oblique rotation produced results
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nearly identical to the orthogonal rotation when using
the same extraction method, as evident in Table 2.
Since oblique rotation will reproduce an orthogonal
solution but not vice versa, we recommend oblique
rotation. 

Sample size. In order to examine how sample size
affected the likelihood of errors of inference
regarding factor structure of this scale, an analysis of
variance was performed, examining the number of
samples producing correct factor structures as a
function of the sample size.  The results of this
analysis are presented in Table 3. As expected, larger
samples tended to produce solutions that were more
accurate.  Only 10% of samples in the smallest (2:1)
sample produced correct solutions (identical to the

population parameters), while 70% in the largest
(20:1) produced correct solutions. Further, the
number of misclassified items was also significantly
affected by sample size.  Almost two of thirteen items
on average were misclassified on the wrong factor in
the smallest samples, whereas just over one item in
every two analyses were misclassified in the largest
samples. Finally, two indicators of extreme
trouble—the presence of Heywood cases (factor
loadings greater than 1.0, an impossible outcome) or
failure to converge, were both exclusively observed in
the smaller samples, with almost one-third of analyses
in the smallest sample size category failing to produce
a solution. 

Table 3:  The Effects of Subject to Item Ratio on Exploratory Factor Analysis

Variable: 2:1 5:1 10:1 20:1 F (3,76)= 02 =

% samples with correct factor
      structure 10% 40%  60% 70% 13.64*** .21

Average number of items 
misclassified on wrong   factor 1.93 1.20 0.70 0.60 9.25*** .16

Average error in eigenvalues 0.41 0.33 .20 .16 25.36*** .33

Average error in factor
loadings .15 .12 .09 .07 36.38*** .43

% analyses failing to converge
after 250 iterations 30% 0% 0% 0% 8.14*** .24

 % with Heywood cases  15%  20%  0%  0% 2.81     .10
*** p < .0001

CONCLUSION

Conventional wisdom states that even though
there are many options for executing the steps of
EFA, the actual differences between them are small,
so it doesn’t really matter which methods the
practitioner chooses. We disagree.  Exploratory factor
analysis is a complex procedure, exacerbated by the
lack of inferential statistics and the imperfections of
“real world” data.  

While principal components with varimax rotation
and the Kaiser criterion are the norm, they are not
optimal, particularly when data do not meet
assumptions, as is often the case in the social sciences.

We believe the data and literature supports the
argument that optimal results (i.e., results that will
generalize to other samples and that reflect the nature
of the population) will be achieved by use of a true
factor analysis extraction method (we prefer maximum
likelihood), oblique rotation (such as direct oblimin),
and use scree plots plus multiple test runs for
information on how many meaningful factors might
be in a data set.  As for sample size, even at relatively
large sample sizes EFA is an error-prone procedure.
Our analyses demonstrate that at a 20:1 subject to item
ratio there are error rates well above the field standard
alpha = .05 level.  The most replicable results are
obtained by using large samples (unless you have
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unusually strong data). 

This raises another point that bears discussion:  by
nature and design EFA is exploratory.  There are no
inferential statistics.  It was designed and is still most
appropriate for use in exploring a data set.  It is not
designed to test hypotheses or theories.  It is, as our
analyses show, an error-prone procedure even with
very large samples and optimal data.  We have seen
many cases where researchers used EFA when they
should have used confirmatory factor analysis.  Once
an instrument has been developed using EFA and
other techniques, it is time to move to confirmatory
factor analysis to answer questions such as “does an
instrument have the same structure across certain
population subgroups?”  We would strongly caution
researchers against drawing substantive conclusions
based on exploratory analyses.  Confirmatory factor
analysis, as well as other latent variable modeling
techniques, can allow researchers to test hypotheses
via inferential techniques, and can provide more
informative analytic options.

In conclusion, researchers using large samples and
making informed choices from the options available
for data analysis are the ones most likely to accomplish
their goal: to come to conclusions that will generalize
beyond a particular sample to either another sample or
to the population (or a population) of interest.  To do
less is to arrive at conclusions that are unlikely to be of
any use or interest beyond that sample and that
analysis.

NOTES
1 Total variance accounted for after rotation is only
given for an orthogonal rotation. It is computed using
sum of squares loadings, which cannot be added when
factors are correlated, but with an oblique rotation the
difference between principal components and factor
analysis still appears in the magnitude of the item
loadings.
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